RemoteLAB 

Internet Remote LaboratoryPhysical Internetcontrolled experimentsGrammarschool of J. Vrchlicky, Klatovy 

Home  Experiments  About Lab  Contact  Links  
EXPERIMENTS
FOR DEVELOPERS

Voltamper characteristic of bulb
Voltamper characteristicThe Voltamper characteristic is one of the basic characteristics of the electrical and electronic elements. The voltampere characteristic is a graph of the current flowing through the appliance to the electrical voltage connected to the appliance. It is just the basic shape of the characteristic and the general course of the current and voltage dependence that many tell us about the electrical element. The shape of a characteristic can be influenced by many parameters. Thanks to this, the "voltamper characteristic" can also be the whole system of graphs of dependence of the current on the voltage whose shape is influenced by some other variable as a parameter  eg voltamper characteristics at different temperature, pressure, magnetic induction etc. Most components or appliances have a linear voltamper characteristic. In some cases, the voltamper characteristic is not completely linear, but for simplicity, small nonlinearities are neglected and the components are considered linear. For example consider a resistor. Conversely, nonlinear components have a voltameric characteristic in the shape of a nonlinear curve, such as exponential but also other curves (diode, thermistor, stabilizers, rectifiers…). Electrical static and dynamic resistanceStatic resistance:For conventional appliances, such as resistors, the relationship between electrical voltage and current is referred to as the electrical (static) resistance of the appliance. If the resistance of the appliance is constant, the voltagetocurrent dependency of the Ohm law and the currenttovoltage ratio are straight. The electrical resistance is given by:
where U is the voltage on the appliance and I is the relevant current flowing through the voltage at the given voltage. Since the graph is a straight line, the resistance is still the same, it can be computed by the relation (1) from any pair of corresponding values. The resistance value R also corresponds to the linear voltamper characteristic. Differential (dynamic) resistance:
Its significance can be shown as follows: If there is little change in the voltage ΔU around the value of U around the given point P, the resulting current will change by changing ΔI as if moving along a line fixed at point P (see Figure 1) . The value of the directive in this line determines the magnitude of the differential dynamic resistance. Its value is again dependent on the position of the point P (compare the slope inclined at points P_{1} and P_{2} in Fig. 1) and is determined by the nonlinear dependence of the element by measuring the differences ΔU and ΔI or theoretically by calculating the derivative:
The differential resistance curve tells us the tendency for the element to increase or decrease. Specifically, for the bulb, the electrical resistance (static and dynamic) of the bulb filaments depends on the temperature ("ignition"). The bulb has a metallic filament which heats up strongly with the passage of the current and its resistance is greater than cold during operation  see Temperature dependence of the metal resistance. BulbTemperature light sourceThe largest and oldest group of artificial sources of light are thermal sources, so called incandescent. Inkandescence is the phenomenon of light emitted by heat excitation. In these sources, light is produced as one of the components of electromagnetic radiation induced by the high surface temperature of a body (burning paraffin candles, passing the electric current through the fiber… etc). Conventional incandescent bulbs work on the principle of socalled electroincandescent – inducing high temperature through the passage of electric current through a highmelting, conductive substance such as carbon or tungsten. The solid is heated to the desired temperature, where visible light is emitted. Tungsten (in the case of the first carbon light bulbs) fires in the light bulbs. The common properties of temperature sources are:
Specific power of the sourceThe specific power of the light source indicates the efficiency of the transformation of the electrical energy into the light. It is equal to the ratio of the emitted light flux (lm) of the light source and its electrical input (W). Specific power is used to compare the efficiency of light sources. It is denoted η [eta] and is given in lumens per watt (lm/W). If it was possible to prevent the source from emitting at other wavelengths than visible, we would have a luminous efficiency of 251 lm/W. This value represents the theoretical maximum to which artificial white light sources may approach. Only 37 % of the maximum efficiency of the monochromatic source is 683 lm/W. Table no. 1: Approximate values of some conventional light sources.
source: Měrný výkon světelných zdrojů aneb účinnost podruhé. ARIGA S.R.O. FotonMag.cz: Bulb as light source




Home  Experiments  About Lab  Contact  Links
